Published on

Python多进程以及共享参数

Authors

Python 多进程以及共享参数

前言

这段时间在做一款游戏的挂机软件,我发现进入游戏后的逻辑和判断人物死亡的逻辑需要同时进行(因为不知道什么时候就暴毙了),以前我习惯用线程来进行同步,但是我发现由于我的代码中的逻辑比较复杂,且有多个嵌套的无限循环会导致线程阻塞,所以我决定用进程的方式来实现同步运行。

进程的概念 multiprocessing

在 Python 中进程是一个独立的运行环境,有自己的内存空间,系统资源和执行状态,你可以给他理解成一个房子,在一段 Python 代码被执行的时候,其实 Python 解释器也会创建一个进程来执行该脚本中的代码,当我们在这个代码中使用多进程的时候,其实是创建了一个子进程去执行代码,而这个脚本的进程则为父进程(相当于生了个孩子)

线程与进程的区别 threading

线程是一个进程中的执行路径,他可以在一个进程中存在多个,且共享进程之间的内存空间和资源,但是他不能并发执行(因为 Python 存在 GIL),而是当 A 线程 不占用资源后,再去执行 B 线程的这样交替执行(对于 IO 操作来说 还是可以进行并发执行的)

为什么采用进程而不用线程

我这里为什么要采用进程而不用线程,因为我主要使用的是 opencv 来识别图片与特征点的,而 opencv 是 CPU 密集型操作,所以对于线程来说,他无法实现并发行执行。

示例代码与解释

结束了上面的“废话”,开始撸代码

创建进程

    import multiprocessing

    def test():
        print("子进程")

    if __name__ == "__main__":
        process = multiprocessing.Process(target=test,args(,))
        print("父进程")
        Process.start()
        process.join()

我们可以看到 创建进程的写法其实是和创建线程差不多的

错误处理

    try:
        process = multiprocessing.Process(target=test,args(,))
        print("父进程")
        process.start()
        process.join()
    except KeyboardInterrupt:
        print("Received KeyboardInterrupt, terminating the process...")
        process.terminate()  # 立即终止所有子进程
    else:
        process.close()  # 关闭进程池,不再接受新的任务
    finally:
        process.join()  # 等待所有子进程退出
        print("所有子进程退出")

进程间共享变量

由于每个进程都开辟了独立的内存空间,所以说他们之间的变量是无法共享的,上面我们说了 执行.py 文件是启动了一个新的 Python 解释器也是开启一个进程,我们进程中的变量和内存空间都是共享的,比如函数中引用的 global 变量 也属于是共享的其实,进程中也提供的办法可以来在不同进程中共享变量,只不过不像是 global 那样了,且根据不同的变量形式划分的了不同的写法

基本数据类型

    shared_val = multiprocessing.Value('i', 0)  # 'i' 表示整数
    shared_val = multiprocessing.Value('b', True)  # 'b' 表示布尔值
    shared_val = multiprocessing.Value('d', 0.0) # d 表示浮点数

我们可以推测出 i 表示整数 是因为 int 是 整数类型 b 表示布尔值 是因为 bool 是 布尔类型 d 表示浮点数 是因为 float 是 浮点类型

数组

PS:这里需要提前引入 ctypes 模块

    shared_array = 10
    # 初始化共享数组
    for i in range(array_size):
        shared_array[i] = i

    shared_array = multiprocessing.Array(ctypes.c_int, array_size)
    # 创建进程
    process = multiprocessing.Process(target=test, args=(shared_array,))

取值

    def test(shared_array):
        print(shared_array[0])
        shared_array[0] = 10

字典

字典我们需要用到 Manager 对象

    # 创建 manager 对象
    manager = multiprocessing.Manager()
    # 创建一个共享字典
    shared_dict = manager.dict()
    # 初始化字典
    shared_dict['a'] = 1
    # 创建进程
    process = multiprocessing.Process(target=test, args=(shared_dict,))

取值

    def test(shared_dict):
        print(shared_dict['a'])
        shared_dict['a'] = 10

队列

队列我们需要用到 Manager 对象 PS:这里需要提前引入 ctypes 模块

    # 创建 manager 对象
    manager = multiprocessing.Manager()
    # 创建一个共享队列
    shared_queue = manager.Queue()
    # 初始化队列
    shared_queue.put(1)
    # 创建进程
    process = multiprocessing.Process(target=test, args=(shared_queue,))

取值

    def test(shared_queue):
        print(shared_queue.get())
        shared_queue.put(10)